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Gkeyll Overview

@ Prototype code to explore advanced algorithms for continuum edge
gyrokinetic simulation (e.g. edge plasma turbulence)
e Emphasis on using energy-conserving schemes
@ Main code is written in C++

@ Lua scripts for simulations

Goal

A robust code capable of running very quickly at coarse velocity space resolution
while preserving all conservation laws of gyrokinetic/gyrofluid equations and
giving fairly good results.




Background

@ Previously, Gkeyll's Poisson bracket solver was formulated for two
dimensions (1x + 1v and 2x)

@ Goal of this work is to extend Gkeyll's Poisson bracket solve capabilities to
handle general Hamiltonian systems in 2x + 2v and 3x + 2v

@ Algorithm (an extension of the work of Liu and Shu') conserves energy
exactly even with upwinding and is stable in the L, norm of the distribution
function f

o Allow distribution function to be discontinuous
e Hamiltonian is in the continuous subset of space used for f

1J-G. Liu and C.-W. Shu. “A High-Order Discontinuous Galerkin Method for 2D
Incompressible Flows”. In: Journal of Computational Physics 160.2 (2000), pp. 577 —596.
ISSN: 0021-9991.



Evolution Equation

The Poisson bracket operator is defined as

of _..0g
f,gt = —MNY—=.
{f. g} 0z 0z
We are interested in solving conservative equations of the form

o(Jf)
ot

+V-(Jaf) =0,

where V is the phase-space gradient operator and a is the phase space velocity
vector whose components are defined as
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Discontinuous Galerkin Solutions

Discontinuous Galerkin schemes use discontinuous function spaces (usually
made of polynomials) to represent the solution.
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Figure: The best L» fit of x* 4 sin(5x) (green) using piecewise constant (left), linear
(center), and quadratic (right) polynomials.

Extension of Gkeyll to 2D

APS DPP Meeting

5/ 19



Discretization of the Evolution Equation Using DG

@ Introduce a mesh K; of the domain K.

@ Find f, in the space of discontinuous piecewise polynomials such that for all
basis functions ¢y, we have

fa(x, v, vy 1 ) = Z f()dx(x. v, v 1)
/ Jhcz»k—dz— / TV - anfndz — j{ Jvbin - anF dS

Here, F = F(f;*,f,) is the consistent numerical flux on surface 8K; and 7,
has been taken to be time-independent.



ETG Test Problem Description

@ Model problem involves curvature-driven ETG instabilities and turbulence in
a local 2D (2x4-2v) limit

@ Simulation domain is a small box of size AR x AR on the outer midplane
of a tokamak

@ Axisymmetry in toroidal direction

@ Parallel gradients of f are ignored

@ Use set of coordinates (x, y, v, i), where

e x is the radial coordinate
e y is the vertical coordinate

@ Goals are to reproduce linear growth rate of instability and produce 2D
turbulent nonlinear saturation



Physical Parameters Based on Cyclone Base Case?

Symbol Expression Value
AR 32ps 1.819 x 103 m
Os Cs/ Qi 5.683 x 107° m
By 191 T
a 0.4701 m
Ro 1.313 m
R Ro + 0.5a 1.548 m
Lt R/10 0.1548 m
no 4.992 x 1019 m~—3
Tio = Teo 2.072 keV

2A. M. Dimits et al. “Comparisons and physics basis of tokamak transport models and
turbulence simulations”. [n: Physics of Plasmas 7.3 (2000), pp. 969-983.



Test Problem Equations

1
Hs = Emsvf + uB + gs¢

b=2
_ma B =Bt Uyxbsp- "y
2B Qs gsX
B
Q= > Bl =b-B =B
ms
1
0 e 0 0
1 By
) 0
n %5 L J = m:Bj = m.B
0 -2 0 o0
ms By
0 0 0 o

Potential solved for by assuming adiabatic ions and using quasineutraility
di
—njo(xo) TO¢>(X Y. t) = ne(x,y, t) — njo(x),
1

where njo(xp) is the value of the ion density in the center of the simulation
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Grid Resolution and Boundary Conditions

@ Initial simulations represent solution using piecewise linear basis functions
o Plan to investigate use of higher-order polynomials, Maxwellian-weighted
basis functions in future
@ Boundary conditions:

e Zero flux BCsin vj and w on f
o Periodic BCs in x and y on fluctuating components of ¢ and f

Coordinate | Number of Cells Minimum Maximum
x N R R+ AR
y Ny ~AR/2 AR/2
Ny . N,
v Ny, —min<4,2.5\/7> VTe m|n<4,2,5\/7> Vre
; N, mv2,
H N, = N‘,H /2 0 mm(16,4 2“) 232
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Initial Conditions

B ne(x,y) msz #B(x)
felx, v v 1) = 27 Teo () /mP2 | " 2Teo () | [_ TeO(X)}
Teo(x,y) = T (1 - XL_TR)
n,'o(X) = Np
Tio(x) =T,

For linear simulations, we initialize a perturbation with a single k, mode:

ne(x,y) = no {1 + 10—35—6 cos(ky,m,-ny)} .
T

For nonlinear simulations, a spectrum of k, modes are included:

2
Y X — X
ne(x,y) = no {1 + 10 QL—i cos( Ky, miny) €Xp [(2020)

|} o—arp



Linear Dispersion Relation for ITG/ETG in Local
(kj = 0) Toroidal Limit

The dispersion relation for the system can be derived as®

_”Oa qa¢ — os QS¢/d3
(U Wy

_ qs¢ R R w

- [Ro(w) ar (w )i (a)]
where w] = w.[l + (Lo/L7)(v{/2VE +uB/VvE = 3/2)], way = wa(v +uB)/ V¢,
Wy = kypeVt/R.

Here, the subscript a refers to the adiabatic species and the subscript s refers to
the kinetic species.

3M. A. Beer and G. W. Hammett. “Toroidal gyrofluid equations for simulations of
tokamak turbulence”. In: Physics of Plasmas 3.11 (1996), pp. 4046—-4064.
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Linear Dispersion Relation for ITG/ETG in Local
(kj = 0) Toroidal Limit

Neglecting FLR effects, the three parts of the ion response function can be
written in terms of the plasma dispersion function®:

Ro(x) =152 ( ;)

Ru(x) = %22 ( ;)

wor- (5 (8) ()

Using nga = nos, and g,/gs = —1, the dispersion relation is

w R w R w Ts
o=ow =)+ 1R () + R (5) + 7

4H. Biglari, P. H. Diamond, and M. N. Rosenbluth. “Toroidal ion pressure gradient driven
drift instabilities and transport revisited”. In: Physics of Fluids B: Plasma Physics 1.1 (1989),
pp. 109-118.
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Linear Growth Rate Tests
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Figure: A linear growth rate for the ETG instability can be extracted from the ¢ms vs.
t plot and compared with the exact value.

For R/L, =0 using Ny =4, N, =8, Nv” =16, and N, = 8:

R/LT ‘ ’Ysim/’Yexact

20 1.045

10 1.095

5 1.435
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Linear Growth Rate: Convergence
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Figure: Convergence of numerical linear growth rate for R/L+ = 20 as the number of
cells in vy and u is increased. N, = NVH/Q. Convergence is expected to improve greatly
when Maxwellian-weighted basis functions are implemented.
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Nonlinear Turbulent Saturation
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Figure: Plot of ¢rms vs t for simulations performed at various R/L+ values using
Nx =8, Ny =8, Ny =4, N, =2.
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Nonlinear Turbulent Saturation (R/L+ = 8)
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Figure: Plot of ne — neo at various times. Nx =8, Ny = 8, NVH =4, Ny, =2.
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Nonlinear Turbulent Saturation (R/Lt = 4)
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Figure: Plot of ne — neo at various times. Nx =8, Ny = 8, NVH =4, Ny, =2.
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Conclusions

@ We are able to observe linear growth rates that converge to the correct
values

@ Nonlinear runs look qualitatively reasonable and reach turbulent saturated
states

@ Future plans:

e Implement Maxwellian-weighted basis functions in w and v

e Solve Poisson equation for potential

e Add support for more complicated geometries e.g. non-rectangular and
non-uniform meshes

o Run tests with a third spatial dimension (3x + 2v)
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